C++ is a general-purpose programming language. It has imperative, object-oriented and generic programming features, while also providing facilities for low-level memory manipulation.

It was designed with a bias toward system programming and embedded, resource-constrained and large systems, with performance, efficiency and flexibility of use as its design highlights. C++ has also been found useful in many other contexts, with key strengths being software infrastructure and resource-constrained applications, including desktop applications, servers (e.g. e-commerce, web search or SQL servers), and performance-critical applications (e.g. telephone switches or space probes). C++ is a compiled language, with implementations of it available on many platforms and provided by various organizations, including the Free Software Foundation (FSF’s GCC), LLVM, Microsoft, Intel and IBM.

C++ is standardized by the International Organization for Standardization (ISO), with the latest standard version ratified and published by ISO in December 2014 as ISO/IEC 14882:2014 (informally known as C++14). The C++ programming language was initially standardized in 1998 as ISO/IEC 14882:1998, which was then amended by the C++03, ISO/IEC 14882:2003, standard. The current C++14 standard supersedes these and C++11, with new features and an enlarged standard library. Before the initial standardization in 1998, C++ was developed by Bjarne Stroustrup at Bell Labs since 1979, as an extension of the C language as he wanted an efficient and flexible language similar to C, which also provided high-level features for program organization.

Many other programming languages have been influenced by C++, including C#, D, Java, and newer versions of C (after 1998).


In 1979, Bjarne Stroustrup, a Danish computer scientist, began work on the predecessor to C++, “C with Classes”. The motivation for creating a new language originated from Stroustrup’s experience in programming for his Ph.D. thesis. Stroustrup found that Simula had features that were very helpful for large software development, but the language was too slow for practical use, while BCPL was fast but too low-level to be suitable for large software development. When Stroustrup started working in AT&T Bell Labs, he had the problem of analyzing the UNIX kernel with respect to distributed computing. Remembering his Ph.D. experience, Stroustrup set out to enhance the C language with Simula-like features. C was chosen because it was general-purpose, fast, portable and widely used. As well as C and Simula’s influences, other languages also influenced C++, including ALGOL 68, Ada, CLU and ML.

Initially, Stroustrup’s “C with Classes” added features to the C compiler, Cpre, including classes, derived classes, strong typing, inlining and default arguments.

In 1983, C with Classes was renamed to C++ (“++” being the increment operator in C), adding new features that included virtual functions, function name and operator overloading, references, constants, type-safe free-store memory allocation (new/delete), improved type checking, and BCPL style single-line comments with two forward slashes (//). Furthermore, it included the development of a standalone compiler for C++, Cfront.

In 1985, the first edition of The C++ Programming Language was released, which became the definitive reference for the language, as there was not yet an official standard. The first commercial implementation of C++ was released in October of the same year.

In 1989, C++ 2.0 was released, followed by the updated second edition of The C++ Programming Language in 1991. New features in 2.0 included multiple inheritance, abstract classes, static member functions, const member functions, and protected members. In 1990, The Annotated C++ Reference Manual was published. This work became the basis for the future standard. Later feature additions included templates, exceptions, namespaces, new casts, and a boolean type.

After the 2.0 update, C++ evolved relatively slowly until, in 2011, the C++11 standard was released, adding numerous new features, enlarging the standard library further, and providing more facilities to C++ programmers. After a minor C++14 update released in December 2014, various new additions are planned for 2017 and 2020.


According to Stroustrup: “the name signifies the evolutionary nature of the changes from C”. This name is credited to Rick Mascitti (mid-1983) and was first used in December 1983. When Mascitti was questioned informally in 1992 about the naming, he indicated that it was given in a tongue-in-cheek spirit. The name comes from C’s “++” operator (which increments the value of a variable) and a common naming convention of using “+” to indicate an enhanced computer program.

During C++’s development period, the language had been referred to as “new C” and “C with Classes” before acquiring its final name.


Throughout C++’s life, its development and evolution has been informally governed by a set of rules that its evolution should follow:

  • It must be driven by actual problems and its features should be useful immediately in real world programs.
  • Every feature should be implementable (with a reasonably obvious way to do so).
  • Programmers should be free to pick their own programming style, and that style should be fully supported by C++.
  • Allowing a useful feature is more important than preventing every possible misuse of C++.
  • It should provide facilities for organizing programs into well-defined separate parts, and provide facilities for combining separately developed parts.
  • No implicit violations of the type system (but allow explicit violations; that is, those explicitly requested by the programmer).
  • User-created types need to have the same support and performance as built-in types.
  • Unused features should not negatively impact created executables (e.g. in lower performance).
  • There should be no language beneath C++ (except assembly language).
  • C++ should work alongside other existing programming languages, rather than fostering its own separate and incompatible programming environment.
  • If the programmer’s intent is unknown, allow the programmer to specify it by providing manual control.